

Progress in Molecular Manufacturing

David R. Forrest, ScD, PE

13th Foresight Conference on Advanced Nanotechnology San Francisco, CA 24-27 October 2005

Overview

Vision for Molecular Manufacturing _Molecular robotic systems _Products built to atomic precision _High performance _Low cost

Overview

State of the Technology Mechanosynthesis Experiment Theory Molecular machines Molecular structures \rightarrow building blocks **Biological/inorganic hybrid machines** Instruments \rightarrow improved capability **Computational tools**

The Vision

Molecular Manufacturing

The production of complex structures via nonbiological mechanosynthesis (and subsequent assembly operations)

Mechanosynthesis: chemical synthesis controlled by mechanical systems operating with atomic-scale precision, enabling direct positional selection of reaction sites.

Envisioned Products

- Powerful desktop computers ~ billion processors
- Abundant energy (solar)
- Cures for serious diseases using medical nanorobots
- New materials 100 times stronger than steel
- A clean environment
- More molecular manufacturing systems

Feynman's Plenty of Room at the Bottom Talk at CalTech

"The principles of physics, as far as I can see, do not speak against the possibility of maneuvering things atom by atom. It is not an attempt to violate any laws; it is something, in principle, that can be done; but in practice, it has not been done because we are too big."

Richard Feynman, 1959

Drexler's Paper PNAS, Sept. 1981

Molecular Engineering: An Approach to the Development of General Capabilities for Molecular Manipulation

"By one path or another, we will eventually develop tools that enable us to assemble complex structures to atomic specifications. . . [These] assemblers, if supplied with materials and energy, will be able to build almost anything— including more assemblers and more systems for providing them with materials and energy."

Eric Drexler, 1985

K. Eric Drexler Nanosystems

Molecular Machinery,

Manufacturing,

and Computation

Molecular Bearing

Differential Gear

Copyright 1997 IMM. All rights reserved.

Planetary Gear

Copyright 1995 IMM and Xerox. Do not reproduce without permission.

Based on a schematic design in Nanosystems: Molecular Machinery, Manufacturing, and Computation by K. Eric Drexler.

Animation: ©2005 Gina Miller.

Desktop Assembler Animation

John Burch

Eric Drexler

Advances in Molecular Assembly and Molecular Robotics

Binnig and Rohrer Eigler Ho and Lee Iijima Ruoff, Banhart Biological/Zettl Invention of STM Manipulation of atoms Single-molecule assembly Discovery of carbon nanotubes Welding of nanotubes Molecular motors

State of the Technology: Positional Assembly – Experiment

(Ho and Lee, Cornell, 1999)

Wilson Ho and Hyojune Lee

CO bonded to Fe, 13 K

State of the Technology: Positional Assembly – Experiment

Oyabu, et al., http://link.aps.org/abstract/PRL/v90/e176102

Silicon atom, no voltage

Hersam, M. C., Abeln, G. C., and Lyding, J. W. (1999), "An Approach for Efficiently Locating and Electrically Contacting Nanostructures Fabricated via UHV-STM Lithography on Si(100)," Microelectronic Engineering, 47, p. 235.

State of the Technology: Positional Assembly – Theory

- Musgrave, Brenner
- Merkle, Freitas
- Drexler
- Others

http://www.foresight.org/stage2/mechsynthbib.html

Theory: Diamondoid Mechanosynthesis

http://www.molecularassembler.com/Papers/DMSToolbuildProvPat.htm

U.S. Provisional Patent Application No. 60/543,802

Robert Freitas

Theory: Diamondoid Mechanosynthesis

Allis, D.G. and K.E. Drexler (2005) Design and Analysis of a Molecular Tool for Carbon Transfer in Mechanosynthesis, J. Comput. Theor. Nanosci **2:**45-55 http://e-drexler.com/p/04/04/0330drexPubs.html

Theory: Diamondoid Mechanosynthesis

Allis, D.G. and K.E. Drexler (2005) Design and Analysis of a Molecular Tool for Carbon Transfer in Mechanosynthesis, *J. Comput. Theor. Nanosci* **2:**45-55

- Tool for building diamondoid structures
- DFT-based analysis
- Extensive treatment of reliability and failure modes

More coming. . .

Diamond Surfaces and Diamond Mechanosynthesis

Robert A. Freitas Jr. Ralph C. Merkle

Landes Bioscience

Robert A. Freitas Jr. J. Storrs Hall

State of the Technology: Hardware Omicron 4-head STM/SEM

4 SPM heads + SEM Repositioning to 30 nm

50K to 500KUHV

State of the Technology: Hardware Zyvex Nanomanipulators

- 4 Positioners
- Retrofit to electron microscopes
- Fine positioning to 5 nm

Zyvex Nanoeffector Probes and Microgrippers

- Tungsten wire probe to 65 nm
- Grip 1-500 μm objects

Manufacturing Capability – Exemplified by Nanotube Advances

- Structural members
 - _ Stiff
 - _ Strong
 - _ Join
 - _ Bend
 - _ Break
 - _ Manipulate
- Chemical Reactants
 - Functionalize surface
 - Coat surface
 - _ Grow from catalysts

- Mechanical Devices

 Bearings, rotating parts
 Telescoping arms, sliding parts
- Thermal Devices
 - High thermal conductivity along axis
- Electronic Devices
 - _ Excellent conductivity
 - High current density
 Field emitters
 - Can be semiconducting
 - Field effect transistors

Grown to Uniform Length

Grown in Arrays

Nanotube Joined to Probe and Tested

(2000 Ruoff, Northwestern)

Min-Feng Yu, Oleg Lourie, Mark J. Dyer, Katerina Moloni, Thomas F. Kelly, Rodney S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, *Science*, 287, 28 Jan. 2000, p. 637-640.

Nanotubes Soldered

(2000 Banhart, U. of Ulm, Germany)

Florian Banhart, "The formation of a connection between carbon nanotubes in an electron beam," Nano Letters 1, 329-332 (2001).

Nanotube Scaffolding and Weaving

Skidmore, et al., 1999 http://people.nas.nasa.gov/~globus/papers/NanoSpace1999/paper.html

Nanotubes Between Silicon Towers

(Cassell, et al., 1999)

Telescoping Nanotubes

(Zettl, Lawrence Berkeley Laboratory, 2001)

http://www.lbl.gov/Science-Articles/Research-Review/ Magazine/2001/Fall/features/02Nanotubes.html

Molecular Motor

(Zettl, LLNL and U.C. Berkeley, 2003)

Nanoelectromechanical Relaxation Oscillator

(Regan, et al., U.C. Berkeley, 2005)

Courtesy Zettl Research Group, Lawrence Berkeley National Laboratory and University of California at Berkeley

State of the Technology: Building Blocks

http://seemanlab4.chem.nyu.edu/Trig.arrays.html

DX Bulged Triangle Motif

State of the Technology: Molecular Building Blocks

http://meisterlab.chem.pitt.edu/tlab/bin/ view/Main/ResearchOverview

A few monomers ...

Chris Schafmeister U. Pittsburgh

Schafmeister Building Blocks

Institute for Molecular Manufacturing

Schafmeister Building Blocks

Laboratories for Nanobiology Protonic Nanomachine Group

(Namba, Osaka U. Graduate School)

Institute for Molecular Manufacturing

Flagellar Motor (30-40 nm diameter, 20,000-100,000 rpm)

Protonic Nanomachine Project, ERATO http://www.fbs.osaka-u.ac.jp/en/seminar/09a.html

State of the Technology: Hybrid Machines

(Montemagno, www.cnsi.ucla.edu/faculty/montemagno_c.html)

Electric field control of the collection, release and transport of anti-mouse IgG

Extraction of nutified substance

State of the Technology: Molecular Electronic Devices

Reed (Yale) Tour (Rice) Williams (HP) Avouris (IBM) Nantero Ellenbogen (MITRE) Wilson (U. London) http://www.eng.yale.edu/reedlab/ http://www.ruf.rice.edu/~kekule/ http://www.hpl.hp.com/research/qsr/ http://www.research.ibm.com/nanoscience/ http://www.nantero.com/ http://www.naitre.org/tech/nanotech http://www.qmw.ac.uk/~ugap735/MolElec.html

Molecular Computing

(Hewlett Packard, http://www.hpl.hp.com/research/qsr/)

State of the Technology: Design

- Significant body of work
- Drexler <u>http://e-drexler.com/</u>
- Merkle
 <u>http://www.merkle.com/</u>

K. Eric Drexler

Nanosystems

Molecular

Machinery,

Manufacturing, and Computation

Molecular Dynamics – Planetary Gear

(W.A. Goddard, Caltech)

Josh Hall

@imm

Institute for Molecular Manufacturing

interie bisplay. Tabes prioder baila

Computational Tools – NanoRex

http://www.nanoengineer-1.com/mambo/

Self-Replication

http://www.molecularassembler.com/KSRM.htm

- Exhaustive review of historical and current work
- 137-dimensional map of the entire kinematic replicator design space
- Distinguishes between different kinds of replicators

"Pathways"

- Feynman (larger machines making smaller ones)
- Lithographic techniques
- Self-organizing materials, supramolecular chemistry
- Self-assembly
- DNA engineering
- Protein engineering
- Hybrid biological and inorganic structures
- STM technology with manipulator tools
- Molecular robots

All of the Above

Factors That Affect the Timeline

Quality and focus of effort
 Focus on technology, not just science
 Magnitude of funding
 Perception of proximity to realization
 Designer talent pool (funding)

Technological Challenges

- Improved capability of instrumentation
 Precision
 - Manipulation
- Molecular tips for mechanosynthesis
- Richer library of molecular building blocks
- Improved computational tools for analysis and design of molecular manufacturing systems
- Design of massively parallel manufacturing systems

Summary

- There is a clear vision of molecular manufacturing
- Theoretical basis established through engrg. analysis
- Positional molecular assembly is experimentally proven
- Molecular machines based on carbon nanotubes have been made
- Self-assembling molecules → building blocks
- Can exploit capabilities of existing biological molecular machines
- New instruments
 → improving manipulation/imaging
- New software → improved design tools

Thank you!