GENERAL DYNAMICG

 Advanced Information SystemsIndirectly-Replicating NanoMachines: A Kinematic Cellular Automata Approach
NASA Institute for Advanced Concepts Phase I: CP-02-02

Principal Investigator:
Tihamer Toth-Fejel
Tihamer.Toth-Fejel@gd-ais.com

Consultants:
Robert Freitas
Matt Moses

October 22-24, 2004 Washington, DC
First Conference on Advanced Nanotechnology: Research, Applications, and Policy

Contents

1. Rationale
2. Benefits
3. Applications
4. Accomplishments

- Characterization
- Quantification
- Hierarchy
- Subsystems
- Cells
- Simulations

5. Conclusion and Future Directions

Rationale

- Why Replication?
- Revolutionary manufacturing process
- Nanotechnology
- Massive reduction in costs per pound
- Why Indirect Replication?
- Easier to implement
- Easier to control
- Why not Self-Assembly?
- Not "Genotype + Ribotype = Phenotype" (GRP)
- No theory
- Against the principles of sound design However, probably useful for simple input parts

Rationale: Why Kinematic Cellular Automata (KCA)?

- Combines Von Neumann' s two designs
- Hierarchical, standard Turing Equivalent
- Indirect replication
- Increased flexibility
- Decreased complexity
- Large system work envelope
- More capabilities than smart dust
- Both macro and nano scale

Benefit: Cost Reduction/Lo vs

 Complexity

Traditional Top Down Manufacturing vs Bottom-up Molecular Replication

Benefit: Programmable Materials
 Simple identical modules

- Flow Mode
- Pixelated Mode
- Logic Processing Mode

Flow Mode

Pixelated Mode

Application: Space

- Exploration
- Robust
- Hyperflexible
- Base Expansion
- Lower launch weight
- Resource utilization
- Terraforming
- Politically feasible
- Opens new frontier

Accomplishments

Goals

Characterize unexplored area	Explored Multi-Dimensional Space
Quantify the difficulty	Not trivial, but less than a Pentium
Confirm or refute approach	Refined Approach - Useful IRS - Developed Hierarchy of Subsystems, Cells, Facets, \& Parts - Transporter, Assembler, \& Controller - Low-level simpler than high-level - Top-Down vs Bottom-Up - Self-Assembly for input Parts - Standard concepts - Universal Constructor is approach, not goal
Design a KCA IRS	Developed Requirements Preliminary Design
Simulate designs	Modeled Simulations - Sensor Position - NAND gate and op-amp self-assembly - Facet - Transporter and Assembler

Characterizing Replication: Adjusting the Freitas/Merkle 116-Dimension Design Space

Quantifying Difficulty of IRS Design

Hierarchy

Biology	KCA IRS	Computer
Horse	Replicating System: Useful	Subsystems: Transporter, Connector, and Controller
Brain and Muscles	Bus/Memory, ALU, and Controller	
Cells	Cells: Cubic devices with only three limited degrees of freedom	Finite State Machines, Shift Registers, Adders, and Multiplexers
Organelles	Facets: Symmetrical implementation	NAND gates
Proteins	Parts: Inert, Simpler than higher levels	Transistors, Wires
Genes	Self-assembling Subparts: Wires, Transistors, Actuators	Molecules
Molecules	Molecules	

The Bottom-up Hierarchical Approach:

The essential problem in replication
Well-ordered environment,
Simple inert parts
Symmetric facets
Modular cells
Transporter, Connector, and Controller subsystems
Indirectly-Replicating System

Transporter Subsystem

Connector Subsystem

(pink corner structural part

Controller Subsystem

FPGA Editor View of a PicoBlaze Macro in an XC2S50E Spartan-IIE Device

Unit Cell

(different styles of tabs, actuators, and sensors shown)

Facet Animation

Parts: Structure, Sensors \& Actuators

Self-assembling Wang Tiles

Semi-automated Design of SelfAssembling NAND_aate_and op-amo

Simulation of Transporter and Connector

Conclusion and Future Directions

No roadblocks!

- Final Design for macro physical prototypes
- Build physical prototypes
- Build and run small cell collections
- Build and run subsystems
- Build macro scale IRS
- Write Place and Route software
- Refine concept at nano scale

Acknowledgements

- NASA Institute for Advanced Concepts
- John Sauter _ Altarum
- Rick Berthiaume, Ed Waltz, Ken Augustyn, and Sherwood Spring _ General Dynamics AIS
- John McMillan and Teresa Macaulay
_ Wise Solutions
- Forrest Bishop
_ Institute of Atomic-Scale
Engineering
- Joseph Michael _ Fractal Robots, Ltd.

