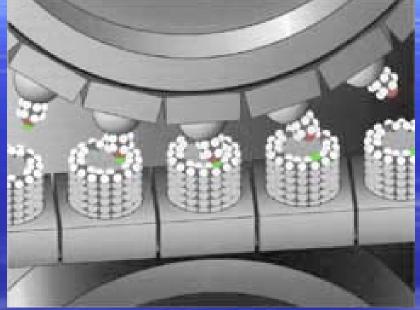
Clean Molecular Manufacturing "No Atom Left Behind" **Chris Phoenix Director of Research Center for Responsible Nanotechnology**

Today's dirty manufacturing

>Heavy metals >Extraction >Manufacturing >Disposal > Processing ≻Coating ≻Trimming >Imprecise chemistry >Sludge

Mechanical Chemistry


Mechanical Chemistry

> Transfer bound molecular fragments > Hydrocarbon tool refreshing (Merkle, 1997) Need to build product with every atom > Proposed bonds are all strong enough to survive at room temperature > Reactions are digital, verifiable > Room-temp atom removal has been done Mechanical force has been used to: Remove a single silicon atom from a crystal > Replace it > Bond amino acids

Molecular manufacturing

> Precise chemistry >Clean manufacturing >Light elements >Locally available Easy recycling > High-performance products >Strength (1000x) Computation density and efficiency (100,000x) Power density (100,000x)

Molecular Mfg. Definition

> Programmable Chemistry >A few operations, repeated... Molecular Features >High performance Engineered Structures >Easy to design Reliable Operation >Allows automation >Autoproductive Manufacture >Exponential manufacturing

Molecular Mfg. Performance

Scaling Laws Power density ~ smallness Several kilowatts per cubic millimeter Feature density ~ smallness³ Earth Simulator in a cubic millimeter > Strength >100 times as strong as steel >Another factor of 10 for compression->tension >A 10-pound airplane, yacht, car...

Molecular Mfg. Scalability

Scaling Laws, again >Operation speed ~ smallness >A million operations per second >A billion atoms ~ 1/5 micron cube Could be built in ~1 hour by 1 billion-atom robot These systems, being reliable, could be run in parallel efficiently. >A 10-pound factory, making its duplicate (or anything else) every day...

Solving today's problems...

> Fossil fuels \rightarrow Solar energy >Inefficient infrastructure > Rebuild quickly >Agriculture -> Greenhouses > Greenhouse gases \rightarrow Collect them >Other problems > Monitor them Small planet → Space access

...Creating tomorrow's problems

Simple overuse
Terraforming
Heat pollution
Weapons manufacture
IP control
Social and ethical issues
Etc...

Conclusion

Molecular manufacturing can be as precise and elegant as digital logic.

Chris Phoenix cphoenix@CRNano.org http://CRNano.org http://Wise-Nano.org **Director of Research**

Center for Responsible Nanotechnology

